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2 Forschungszentrum Jülich, Institut für Kernphysik (Theorie), D-52425 Jülich, Germany
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Abstract. We calculate the baryon octet masses to fourth order in chiral perturbation theory employing
dimensional and cut-off regularization. We analyze the pion and kaon mass dependences of the baryon
masses based on the MILC data. We show that chiral perturbation theory gives stable chiral extrapolation
functions for pion (kaon) masses below 550 (600) MeV. For the pion-nucleon sigma term we find σπN (0) =
39.5 . . . 46.7MeV.

PACS. 12.38.Gc Lattice QCD calculations – 12.39.Fe Chiral Lagrangians

1 Introduction and summary

The masses of the ground-state baryon octet are of fun-
damental importance in the investigation of three-quark
states in QCD. With the advent of improved techniques
in lattice QCD and systematic studies within the frame-
work of chiral perturbation theory, one can hope to gain
an understanding of these quantities from first principles.
Present-day lattice calculations are done at unphysical
quark masses above the physical values, therefore chiral
extrapolations are needed to connect lattice results with
the physical world, provided that the masses are not too
high (for an early approach to this problem, see, e.g., [1]).
With the recent-low-quark-mass data from the MILC Col-
laboration [2,3] it appears to be possible to apply chiral
extrapolation functions derived from chiral perturbation
theory (CHPT) to the masses of the ground-state baryons
(for a review on CHPT, see [4]). In this paper, we analyze
the baryon masses as a function of the pion and the kaon
masses in CHPT based on the MILC data. Other perti-
nent lattice papers are, e.g., [5–9]. It should be said from
the beginning that we ignore the effects of a) the finite
volume, b) the finite lattice spacing and c) the staggered
approximation in this study1 since our aim is more modest
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—we want to find out whether these chiral extrapolations
can be used for the presently available lattice data. Once
this test is performed, one should then apply the full for-
malism including the above-mentioned effects. Note that
the quark mass expansion of QCD is turned into an ex-
pansion in Goldstone boson (GB) masses in CHPT —we
thus use both terms synonymously.

The baryon masses have been analyzed in various ver-
sions of baryon CHPT to third and fourth order; for an
incomplete list of references see [13–19]. Our investigation
extends the work in the two-flavor sector presented in [20]
and we heavily borrow from the earlier SU(3) calculations
of [15,17]. The pertinent results of this investigation can
be summarized as follows:

1) We have calculated the baryon masses to third and
fourth order in the chiral expansion making use of cut-
off regularization as proposed in [20]. As in that paper,
we have also considered an improvement term at third
order to cancel the leading cut-off dependence in the
baryon masses, see sect. 3.2.

2) The improvement term consists of three independent
terms, whose cut-off–independent coefficients have
been determined by considering the nucleon mass (to
allow for a direct comparison with the SU(2) calcu-
lation of ref. [20]). We have demanded that for the
physical pion and the physical kaon mass the nucleon
mass passes through its physical value. This fixes two
parameter combinations. The third parameter is de-
termined from a best fit to the trend of the earlier
MILC data [2] for mN (Mπ), cf. fig. 2, under the condi-
tion that the deviation from the earlier determination
of the corresponding low-energy constants in [15] is of
natural size. We find indeed a visible improvement in
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the description of the lattice data and also much better
stability under variations of the cut-off.

3) The full fourth-order calculation utilizing the low-
energy constants as determined from the improvement
term leads to an accurate description of the MILC data
for pion masses below 550 MeV, see again fig. 2. Note
that the two lowest-mass points of the more recent
MILC data [3] cannot be described. Also, the use of
the low-energy constants (LECs) from [15] gives a less
satisfactory description. We have discussed the theo-
retical uncertainty of this procedure, cf. fig. 3.

4) From the quark mass dependence of the nucleon mass,
we can deduce the pion-nucleon sigma term. For the
best sets of low-energy constants, we find σπN (0) =
39.5 . . . 46.7MeV.

5) The kaon mass dependence of the nucleon mass is less
well determined. Still, the extrapolation functions can
be applied to kaon masses below ' 600MeV. We de-
duce that the baryon octet mass in the chiral limit lies
in the interval 710MeV . m0 . 1070MeV. This is
consistent with earlier estimates, see, e.g., [15].

6) We have also considered the pion and kaon mass de-
pendences of the Λ, the Σ and the Ξ and compared
to the existing MILC data, cf. figs. 6-11. Note that we
have not fitted to these masses. Our chiral extrapola-
tions for the Σ and in particular for the Ξ as a function
of the pion mass are flatter than the MILC data. This
is partly due to our strategy of fixing all parameters
on the nucleon mass. We remark, however, that one
should expect a decreased pion mass dependence as
the number of strange valence quarks increases.

The material in this paper is organized as follows. Sec-
tion 2 contains the effective Lagrangian and a short discus-
sion about the various regularization methods employed in
our calculations. In sect. 3, the ground-state baryon octet
masses are given at third, third improved and fourth order
in the chiral expansion. In particular, we concentrate on
the differences to the SU(2) case [20] (we refer to that pa-
per for many details). Our results for the various baryon
masses as functions of the pion and the kaon masses and
the stability of these results under cut-off variations are
given and discussed in sect. 4. Many technicalities are rel-
egated to the appendices.

2 Formalism I: generalities

In this section, we display the effective Lagrangian under-
lying our calculations and discuss briefly the cut-off reg-
ularization utilized and its relation to the more standard
dimensional regularization (DR). We borrow heavily from
the work presented in refs. [15,20] and refer the reader for
more details to these papers.

2.1 Effective Lagrangian

Our calculations are based on an effective chiral meson-
baryon Lagrangian in the presence of external sources (like

e.g., photons) supplemented by a power counting in terms
of quark (meson) masses and small external momenta. Its
generic form consists of a string of terms with increasing
chiral dimension,

L = L(1)φB + L(2)φB + L(3)φB + L(4)φB + L(2)φ + L(4)φ . (2.1)

Here, B collects the baryon octet and φ stands for the
Goldstone boson octet. The superscript denotes the power
in the genuine small parameter q (denoting Goldstone bo-
son masses and/or external momenta). The explicit rep-
resentations of φ and B are

φ(x) =
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. (2.2)

A complete one-loop (fourth-order) calculation must in-
clude all tree level graphs with insertions from all terms
given in eq. (2.1) and loop graphs with at most one inser-

tion from L(2)φB or L(2)φ . Throughout, we employ the heavy-
baryon approach, which allows for a consistent power
counting since the large mass scale (the baryon mass mB)
is transformed from the propagator into a string of 1/mB

suppressed interaction vertices. The lowest-order (dimen-
sion one) effective Lagrangian takes the canonical form

L(1)φB = iTr(B̄[v ·D,B])

+F Tr(B̄Sµ[u
µ, B]) +DTr(B̄Sµ{uµ, B}) , (2.3)

where vµ is the four-velocity of the baryon subject to the
constraint v2 = 1, Tr denotes the trace in flavor space and
D and F are the leading axial-vector couplings, D ' 3/4
and F ' 1/2. Furthermore, Sµ is the spin-vector and
uµ = iu†∇µUu†, where U = u2 collects the Goldstone
bosons (for more details, see [4]). For the calculation of
the self-energy (mass), it suffices to use the partial deriva-
tive ∂µ instead of the chiral covariant derivative Dµ. The
dimension-two chiral Lagrangian can be decomposed as
(for details see [15] and [17])

L(2)φB = L(2,br)φB +

19
∑

i=1

biO
(2)
i + L(2,rc)φB (2.4)

with

L(2,br)φB = bDTr[B̄{χ+, B}] + bFTr[B̄[χ+, B]]

+b0Tr[B̄B]Tr[χ+], (2.5)
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19
∑

i=1

biO
(2)
i = b1Tr[B̄[uµ, [u

µ, B]]] + b2Tr[B̄[uµ, {uµ, B}]]

+b3Tr[B̄{uµ, {uµ, B}}]

+

(

(b4 −m0b15)m0 +
1

4
(b12 −m0b18)m0

)

×Tr[B̄[v · u, [v · u,B]]]

+(b5 + b6 −m0b16)m0Tr[B̄[v · u, {v · u,B}]]

+

(

(b7 −m0b17)m0 +
3

4
(b12 −m0b18)

)

×m0Tr[B̄{v · u, {v · u,B}}]
+b8Tr[B̄B]Tr[uµuµ]

+b112iε
µναβTr[B̄uµ]vαSβTr[uνB]

+

(

(b9 −m0b19)m0 −
1

2
(b12 −m0b18)m0

)

×Tr[B̄B]Tr[v · u v · u]
+b132iε

µναβTr[B̄vαSβ [[uµ, uν ], B]]

+b142iε
µναβTr[B̄vαSβ{[uµ, uν ], B}] , (2.6)

with m0 the octet baryon mass in the chiral limit2. Ex-
plicit symmetry breaking embodied in the external source
χ+ ∼ M (withM the diagonal quark mass matrix) only

starts at this order, collected in L(2,br)φB . It is parameter-
ized in terms of the LECs b0, bD and bF . Throughout, we
work in the isospin limit mu = md = m̂ and thus consider
four different baryon states, the nucleon doublet (N), the
lambda (Λ), the sigma triplet (Σ) and the cascade dou-
blet (Ξ) (isospin breaking corrections are discussed in [17]
and [21]). The operators with the LECs bi (i = 1, . . . , 19)
(more precisely: eight combinations of these) only appear
as insertions in fourth-order tadpole graphs (see [17] for
a detailed discussion). Note that in [15] the contributions
from various combinations of dimension-two LECs were
effectively subsumed in one corresponding coupling since
operators ∼ k2 and ∼ (v · k)2 lead to the same contri-
bution to the baryon masses. We can only do that at a
later stage in the calculation so as to be able to consis-
tently work out the renormalization of these dimension-
two operators. As will become clear later, while in DR
the bi are finite numbers, this is not the case if one em-
ploys cut-off regularization. We stress that in the end, our
chiral extrapolation functions will depend on the three
symmetry-breaking LECs (b0, bD, bF ) and four combina-
tions of two-derivative LECs ∼ k2 since, as shown in [15,
17], the two-derivative LECs ∼ (v · k)2 can be absorbed
entirely in the other four dimension-two LECs ∼ k2 and

2 To differentiate between the chiral-limit mass and the phys-
ical mass is completely standard in chiral perturbation theory.
The parameters entering the chiral Lagrangian are to be taken
in the chiral limit (like here the baryon mass m0), and only
when one calculates observables, one expresses the results in
terms of physical parameters (like here the mB). These only
differ by terms proportional to the quark masses. Since we are
after the chiral expansion of the baryon masses, we must oper-
ate with the chiral-limit mass.

some of the fourth-order LECs. Furthermore, these inde-
pendent two-derivative LECs are precisely the ones that
were already determined in [15] and we can use these val-
ues, after transformation from the dimensional regulariza-
tion representation to the one employed here, as detailed
in sect. 3. Finally, we remark that the recoil terms col-

lected in L(2,rc)φB are given in [15]. Similarly, there are fur-

ther recoil corrections ∼ 1/m2
B collected in L(3,rc)φB . These

involve no unknown parameters, their explicit form is also
given in [15]. To end this section, we give the fourth-order
terms relevant for our calculations,

L(4)φB = d1Tr(B̄[χ+, [χ+, B]]) + d2Tr(B̄[χ+, {χ+, B}])
+ d3Tr(B̄{χ+, {χ+, B}}) + d4Tr(B̄χ+)Tr(χ+B)

+ d5Tr(B̄[χ+, B])Tr(χ+) + d7Tr(B̄B)Tr(χ+)Tr(χ+)

+ d8Tr(B̄B)Tr(χ2+) . (2.7)

We remark that we have employed the notation of [15]
to facilitate the comparison with that work and also use
some of the LECs determined there.

2.2 Regularization schemes

We briefly recall the salient features of the various reg-
ularization schemes employed in calculating the baryon
masses. Heavy-baryon CHPT together with DR was used,
e.g., in the early papers [13–15], and a fourth-order calcu-
lation using infrared regularization (which is also based on
DR to deal with the UV divergences in the loop graphs)
was reported in [17] (for an earlier incomplete calculation,
see [16] and a recent calculation in the extended on-mass
shell renormalization scheme was reported in [19]). To be
definite, consider the leading one-loop pion graph for the
nucleon mass (the sunset diagram with insertions from the
leading-order Lagrangian which is of third order). In the
heavy-baryon approach, it is given by

IπN =
c

4
J(0)M2

π ,

J(0) =
1

i

∫

ddk

(2π)d
1

(M2
π − k2 − iε)(v · k − iε)

, (2.8)

with c = (D + F )2/F 2
0 and F0 the pseudoscalar decay

constant in the chiral limit. In DR, the loop function J(0)
is finite and can be expressed as

J(0) =Md−3
π (4π)−d/2 Γ

(

1

2

)

Γ

(

3− d
2

)

= −Mπ

8π
,

(2.9)
with d the number of space-time dimensions and we have
set d = 4 on the right-hand side of eq. (2.9). This gives
the time-honored leading non-analytic contribution

IπN = − c

32π
M3
π . (2.10)

Note that in DR no power law divergences appear and
therefore loop graphs cannot renormalize the baryon mass
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in the chiral limit and the dimension-two LECs which
leads to self-energy terms ∼M 2

π . If we instead use a three-
momentum cut-off as suggested in [20], the same diagram
leads to the expression

IπN = − c

16π2

∫ ∞

0

dy

∫ Λ

0

d|k| k
4

(k2 +M2
π + y2)3/2

=

− c

16π2

{

Λ3

3
−M2

πΛ−M3
π arctan

Mπ

Λ

}

− c

32π
M3
π .

(2.11)

Note that besides the contribution ∼ M 3
π that is free of

the cut-off, we have additional divergent and finite terms.
The cubic divergence independent of the pion mass leads
to a renormalization of the baryon mass in the chiral limit,
whereas the term ∼ M2

πΛ renormalizes the dimension-
two LECs (the precise relations between the bare and the
renormalized parameters will be given in the following sec-
tion). Also, the finite arctan term is formally of higher or-
der since it only starts to contribute at order M 4

π . Chiral
symmetry has been manifestly maintained by this proce-
dure since no structures besides the ones already appear-
ing in the effective Lagrangian are needed to absorb all
divergences (see also [20] and the more systematic work
reported in [22]). Also, the DR result can be formally ob-
tained when letting the cut-off tend to infinity. This will
also be discussed in more detail below.

3 Formalism II: baryon masses

This section contains the basic formalism to calculate the
baryon masses to fourth order in the chiral expansion. We
briefly discuss the third-order result and the introduction
of an improvement term as proposed in [20]. We then pro-
ceed to present the central new results, namely the baryon
masses to fourth order utilizing cut-off regularization. The
calculation of the baryon self-energy and the correspond-
ing mass shift at a given order in the chiral expansion is
briefly outlined in appendix A.

3.1 Baryon masses at third order

The calculation of the baryon masses to third order in
cut-off regularization is straightforward. Utilizing the loop
integrals collected in appendix B, one obtains

mB = m
(r)
0 + γDB b

(r)
D + γFBb

(r)
F − 2b

(r)
0 (M2

π + 2M2
K)

− 1

24πF 2
0

[

απBM
3
π + αKBM

3
K + αηBM

3
η

]

+
1

12π2F 2
0

[

απBM
3
π arctan

Mπ

Λ

+αKBM
3
K arctan

MK

Λ
+ αηBM

3
η arctan

Mη

Λ

]

+O(q4) , (3.1)

where the state– and quark-mass–dependent coefficients

γD,FB and αPB can be found, e.g., in [4]. As announced, the
baryon mass and the dimension-two couplings are renor-
malized as symbolized by the superscript (r). The precise
renormalization takes the form

m
(r,3)
0 = m0 −

(

5D2

36π2F 2
0

+
F 2

4π2F 2
0

)

Λ3 ,

b
(r,3)
F = bF −

(

5DF

48F 2
0 π

2

)

Λ,

b
(r,3)
0 = b0 −

(

13D2 + 9F 2

144π2F 2
0

)

Λ ,

b
(r,3)
D = bD −

(−D2 + 3F 2

32π2F 2
0

)

Λ. (3.2)

It is instructive to expand the M 3
P arctan(MP /Λ) (P =

{π,K, η}) contributions

mB = m
(r)
0 + γDB b

(r)
D + γFBb

(r)
F − 2b

(r)
0 (M2

π + 2M2
K)

− 1

24πF 2
0

[

απBM
3
π + αKBM

3
K + αηBM

3
η

]

+
1

12π2F 2
0

απBM
3
π

{

Mπ

Λ
− 1

3

(

Mπ

Λ

)3

+ . . .

}

+
1

12π2F 2
0

αKBM
3
K
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MK

Λ
− 1

3

(

MK

Λ

)3

+ . . .

}

+
1

12π2F 2
0
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3
η

{

Mη

Λ
− 1

3

(

Mη

Λ

)3

+ . . .

}

=

m
(r)
0 + γDB b

(r)
D + γFBb

(r)
F − 2b

(r)
0 (M2

π + 2M2
K)

− 1

24πF 2
0

[

απBM
3
π + αKBM

3
K + αηBM

3
η

]

+O(q4) ,

(3.3)

where the last line corresponds to the DR result. As
stated earlier, the additional contributions scale with in-
verse powers of the cut-off and thus vanish when Λ→∞
(which formally corresponds to DR). As already stressed
in [20] (and noted by others), this third-order representa-
tion is not sufficiently accurate to make connection with
lattice results if one is not very close to the physical value
of the GB masses. Therefore, one should perform a fourth-
order calculation or at least add an improvement term that
is formally of fourth order but should be elevated to third
order. We first discuss briefly this latter possibility before
turning to the full-fledged fourth-order calculation.

3.2 Improvement term

As noticed in [20], the third-order result for the baryon
masses shows a very strong cut-off dependence when the
pion mass is increased above its physical value, see fig. 1.
Only when one has a plateau below the chiral-symmetry-
breaking scale Λχ = 4πFπ ' 1.2GeV, has one the required
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Fig. 1. Cut-off dependence of the nucleon mass for var-
ious pion masses with the kaon mass fixed at thrid or-
der. Solid/dashed/dot-dashed/dotted line: Mπ = 140/300/
450/600 MeV.

cut-off independence. For pion masses above 300 MeV,
this plateau vanishes.

To obtain a better stability against cut-off variations,
it was therefore proposed in [20] to promote the fourth-
order operator e1M

4
πN̄N to the third order and to cancel

the leading cut-off dependence in eq. (3.3) by a proper
adjustment of the LEC e1, e1 = efin1 − coeff/Λ, where the
coefficient can be read off from the leading term of the
expansion of the arctan function. For the SU(3) calcula-
tion performed here, the situation is a bit more compli-
cated. In fact, the corresponding improvement term for
the baryon B consists of three contributions (we use the
notation of [15])

εππ1,BM
4
π + επK1,BM

2
πM

2
K + εKK1,BM

4
K , (3.4)

where the coefficients εPQ1,B (P,Q = {π,K}) are linear com-

binations of the fourth-order LECs di defined in eq. (2.7)
(the precise relation can be found again in [15]). Through-
out, we use the Gell-Mann–Okubo relation to express
the Mη-term by the pion and the kaon masses, 3M 2

η =

4M2
K −M2

π . To eliminate the leading (1/Λ)-dependences,
the LECs di have to take the form

d1 = dfin1 −
D2 − 3F 2

576π2F 2
0Λ

, d2 = dfin2 −
DF

64π2F 2
0Λ

,

d3 = dfin3 −
D2 − 3F 2

128π2F 2
0Λ

, d4 = dfin4 −
−D2 + 3F 2

64π2F 2
0Λ

,

d5 = dfin5 +
13DF

288π2F 2
0Λ

, d7 = dfin7 +
35D2 + 27F 2

3456π2F 2
0Λ

,

d8 = dfin8 +
17D2 + 9F 2

1152π2F 2
0Λ

. (3.5)

The dfini are later identified with the finite pieces of the
dimension-four LECs (after the renormalization at fourth
order).

3.3 Baryon masses at fourth order

To fourth order in the chiral expansion, the octet baryon
masses can be written as (when employing CR)

mB = m
(r)
0 + δm

(2)
B + δm

(3)
B + δm

(4)
B

= m
(r)
0 + δm

(2)
B +∆m

(3)
B + fB,3(Λ)

+∆m
(4)
B + fB,4(Λ) , (3.6)

where in the second line we have split the mass shift δm
(i)
B

(i = 3, 4) into cut-off–independent and an explicitly cut-
off–dependent piece. This is done to facilitate the compar-
ison with the results obtained in DR. The various pieces
take the form

δm
(2)
B = γDB b

(r)
D + γFBb

(r)
F − 2b

(r)
0 (M2

0,π + 2M2
0,K) ,

∆m
(3)
B = − 1

24πF 2
0

[

απBM
3
π + αKBM

3
K + αηBM

3
η

]

,

fB,3(Λ) =
1

12π2F 2
0

[

απBM
3
π arctan

Mπ

Λ

+αKBM
3
K arctan

MK

Λ
+ αηBM

3
η arctan

Mη

Λ

]

,

∆m
(4)
B = εP,Q1,BM

2
PM

2
Q + εP,Q2,B,TM

2
PM

2
Q ln

MT

m0
,

fB,4(Λ) = −εP,Q2,B,TM
2
PM

2
Q ln (1 +RT )

+
1

RT

{

β1,B,TΛ
4

(

1−RT +
1

2

(

MT

Λ

)2
)

+βP2,B,TM
2
PΛ

2 (1−RT ) + βP,Q3,B,TM
2
PM

2
Q

}

,

(3.7)

with RT = (1 + M2
T /Λ

2)1/2. Here, we have P,Q, T =
{π,K, η} and the summation convention for these indices
is understood. To arrive at these results, we made use
of the loop integrals collected in appendix B. The result-
ing Λ-dependent terms are separated into a contribution
that contains all the power and logarithmic divergences
and another one that is finite in the limit that Λ → ∞.
Only these latter terms are displayed here. For the nuc-
leon, the ε-coefficients and the β-coefficients are collected
in appendix A. Note also that the fourth-order LECs di
have the form displayed in eq. (3.5) so that the leading
cut-off dependence is canceled. In the second-order term,
we have used the leading terms in the quark mass ex-
pansion of the pion and the kaon mass, denoted M0,P ,
because the difference to the physical masses appears in
the fourth order of the baryon mass expansions. For con-
sistency, we have recalculated the Goldstone boson masses
in cut-off regularization (this was not done, e.g., in [20]);
the explicit formulae are given in appendix C. All appear-
ing polynomial and logarithmic divergences are absorbed
in a consistent redefinition of the bare parameters. The
renormalization of the chiral-limit mass and of the LECs
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takes the form

m
(r,4)
0 = m

(r,3)
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Clearly, higher-order powers in the cut-off Λ appear as
compared to the third-order calculation. Note also the
appearance of a new scale in the logarithmically diver-
gent terms. As can be seen from appendix B, the in-
tegrals I1–I6 and α1–α3 contain terms proportional to
ln(MP /Λ). To properly absorb these divergences, one uses
ln(MP /Λ) = ln(MP /ν) − ln(Λ/ν), with ν the new scale.
From here on, we set ν = m0. As a check, it can be shown
that for Λ → ∞ our fourth-order results agree with the
ones obtained in DR in [15] if one sets µ = m0, with µ the
scale of DR. For this comparison to work, one also has to
account for the fact that in [15] some terms ∼ M 2

PM
2
Q

were absorbed in a redefinition of the di. Further, we
remark that the addition of explicit decuplet degrees of
freedom would not dramatically alter any of the conclu-
sions drawn in our analysis. There is one topic, however,
that needs to be discussed. For simplicity, we consider the
SU(2) case and just talk about the ∆-resonance and use
DR with a scale λ. A theory without explicit delta degrees
of freedom can be obtained from the one including explicit
deltas expanding the result in the small quantity Mπ/∆0,
with ∆0 the N∆ splitting in the chiral limit. In this limit
logarithmic terms ∼ log(Mπ/2∆0) originating from the
∆π branch cut obviously remain. However, such terms do
not pose a problem for the chiral expansion in the theory
without explicit deltas as one can show that the quark-
mass–dependent structures log(Mπ/λ) are consistent with
the chiral expansion, whereas the structures ∼ log(λ/2∆0)
get absorbed in counterterms and thus there are no new
quark-mass–dependent structures. This concludes the nec-
essary formalism, we now turn to the numerical analysis.

4 Results and discussion

Before presenting results, we must fix parameters. In the
meson sector, we use standard values of the LECs Li at
the scale Mρ: L4 = −0.3, L5 = 1.4, L6 = −0.2, L7 = −0.4
and L8 = 0.9 (all in units of 10−3). These are run to the
scale λ = m0 using the standard one-loop β-functions.
Throughout, we set F0 = 100 MeV, which is an aver-
age value of the physical values of Fπ, FK and Fη. For
the leading baryon axial couplings we use D = 0.75 and
F = 0.5. We have checked that varying these parameters
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Table 1. Values of the LECs bi in GeV−1 taken from [15].

b0 bD bF b1 b2 b3 b8

−0.606 0.079 −0.316 −0.004 −0.187 0.018 −0.109

within phenomenological bounds does not alter our con-
clusions. We also stress that our main results are based on
the fourth-order representation of the baryon masses, and
we thus only present a detailed analysis of the theoretical
uncertainties for that order. Also, the issue of the conver-
gence of the chiral expansion can only be discussed when
the complete fourth order is included.

4.1 Fixing the low-energy constants

For the dimension-two LECs from the meson-baryon La-
grangian we use the central values of [15]; these are col-
lected in table 1 (when using CR, we have of course used
the properly transformed values of these LECs). We have
not varied these LECs since such modifications can ef-
fectively be done by changing the fourth-order LECs di
within reasonable bounds. Next we consider the determi-
nation of the fourth-order LECs di. As noted before, the
improvement term for each baryon consists of three pieces.
To determine these, we have only considered the nucleon,
for two reasons. First, there are more lattice results for
this particle than for the others and second, it also facili-
tates the direct comparison with the SU(2) results of [20].
For the nucleon, the coefficients appearing in eq. (3.4) are
related to the LECs di via

εππ1,N = −4(4d1 + 2d5 + d7 + 3d8) ,

επK1,N = 8(4d1 − 2d2 − d5 − 2d7 + 2d8) ,

εKK1,N = −16(d1 − d2 + d3 − d5 + d7 + d8) . (4.1)

We have now varied the values of the di under the follow-
ing constraints: We require that mN (Mπ) passes through
the physical value mN = 940MeV for the physical pion
mass Mπ = 140MeV and similarly for mN (MK) at
MK = 494MeV. Furthermore, we allow for variations of
δdi = ±0.1GeV−3 from the central values of [15] (this is
in fact the largest magnitude of any of these LECs). Un-
der these restrictions, we have tried to describe the trend
of the earlier MILC data with the third-order improved
formula (note that the more recent data [3] were not used
in the fit for reasons discussed below). We have recon-
structed these data from table VIII (VII) of ref. [2]([3])
using the scale parameter r1 = 0.35(0.317) fm. The re-
sulting set of values for the LECs di is denoted as the
“optimal set” from here on. In table 2 we have collected
the values of the di from [15] and for the optimal set. In
fact, the values of the di given in that table refer to the
basis used in [15] as indicated by the superscript “BM”.
These differ by some small finite shifts from the one used
in CR (we refrain from giving the explicit formulae here).
Note that one cannot exactly reproduce these lattice data
as shown by the solid line in fig. 2, but the nucleon mass
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Fig. 2. Nucleon mass in DR at third (dashed), improved third
(solid) and fourth (dot-dashed) order, respectively. The dotted
line represents the fourth-order calculation from [15]. The three
flavor data are from the MILC Collaboration (boxes from [2]
and stars from [3]). The filled circle gives the value of the phys-
ical nucleon mass at the physical value of Mπ.

now increases with growing pion mass as demanded by
all existing lattice results. Also, at fourth order there are
other contributions which are not captured by the im-
provement term, see the discussion below. We also note
that we have not restricted the di such that the GMO
relation 3mΛ + mΣ = 2(mN + mΞ) is fulfilled so as to
have a better handle on the theoretical uncertainty. In-
cluding the improvement term with these values of the
LECs leads indeed to a very reduced cut-off dependence.
Note that the treatment of the improvement term is more
tricky in SU(3) than in the SU(2) calculation since one
has to balance three different terms as opposed to fixing
one in the two-flavor case.

4.2 Nucleon mass and pion-nucleon sigma term

We now consider the nucleon mass as a function of the
pion and the kaon mass in DR and CR. We have calcu-
lated mN at third, improved third and fourth order, see
fig. 2 for DR. In what follows, we mostly focus on the re-
sults obtained at fourth order. The trends when going from
third to improved third to fourth order for the pion mass
dependence of the nucleon mass are very similar to the
SU(2) case discussed in great detail in [20]. We see that
with the optimal set of the di as given in table 2 one ob-
tains a rather accurate description of the earlier and most
of the more recent MILC data [3] for pion masses below
600 MeV, cf. the dot-dashed line in fig. 2. Note, however,
that the two lowest-pion-mass points of the recent MILC
data [3] do not quite fit into the trend of our extrapola-
tion function if one insists that for the physical pion mass
the curve runs through the physical value of mN . More
low-mass pion data and/or a more sophisticated treat-
ment of finite-size/volume effects are needed to resolve this
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Table 2. Values of the LECs di in GeV−3 in the basis used in [15] as indicated by the superscript “BM”. “Opt.” denotes the
optimal set as described in the text.

dBM

1 dBM

2 dBM

3 dBM

4 dBM

5 dBM

7 dBM

8

BM [15] 0.008 0.035 0.069 −0.077 −0.05 −0.018 −0.103

Opt. −0.043 −0.066 −0.031 −0.077 −0.15 −0.118 −0.2
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Fig. 3. Pion mass dependence of the nucleon mass in CR with
Λ = 1GeV for various sets of the LECs di. The solid and the
dot-dashed line correspond to the optimal set of the di and to
the values from [15], respectively, and the various dashed lines
are explained in the text.

problem. It was already stressed in [3] that these points
are problematic concering a chiral extrapolation, and thus
we did not include them in our fitting procedure. If one
were to use the di determined in [15], one already deviates
sizeably from the trend of the MILC data for pion masses
starting at about 500 MeV (dotted line in fig. 2). The
same can be seen for the fourth-order calculation based
on CR utilizing Λ = 1GeV in fig. 3. To get a better idea
about the uncertainty when going to higher pion masses,
we have also performed calculations with three other sets,
namely setting all di = 0.2/0/ − 0.2GeV−3, correspond-
ing to the long-/medium-/short-dashed lines in that fig-
ure. This clearly overestimates the theoretical uncertainty
since some of the di are correlated parameters. Still, it is
safe to say that for pion masses below 550 MeV the theo-
retical error is moderately small. These results for the pion
mass dependence of mN as well as for its cut-off depen-
dence at a given pion mass are very similar to the results
of the two-flavor study reported in [20]. In fig. 4, we show
the kaon mass dependence for the same variety of choices
for the di. Since we enforce that mN takes its physical
value for MK = 494MeV, the resulting kaon mass de-
pendence is much flatter than the pion mass dependence
with decreasing meson masses. In fig. 5 we show the cut-
off dependence of mN for various values of the pion mass.
For pion masses up to 450 MeV, one has a nice plateau
below the scale of chiral symmetry breaking but not any
more for Mπ = 600 MeV. For the kaon mass dependence,
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Fig. 4. Kaon mass dependence of the nucleon mass for various
sets of the LECs di, see fig. 3.
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Fig. 5. Cut-off dependence of the nucleon mass for vari-
ous pion masses with the kaon mass fixed. Solid/dashed/dot-
dashed/dotted line: Mπ = 140/300/450/600MeV.

the situation is somewhat different due to the much larger
meson mass. Here, we still have a reasonable plateau at
MK ' 600MeV. These observations are consistent with
our earlier observations that chiral extrapolations in Mπ

based on the fourth-order CHPT representation can be
applied for masses up to 550 MeV, a result which is consis-
tent with the one found for the SU(2) calculation in [20].
For the kaon mass dependence, one can even go to some-
what higher meson masses.

It is also interesting to study the range of values found
for the octet chiral-limit mass m0 at the various orders
and employing the different regularization schemes and
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Fig. 6. Pion mass dependence of the Λ mass for various sets
of the LECs di as explained in the text.
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Fig. 7. Kaon mass dependence of the Λ mass for various sets
of the LECs di as explained in the text.

values of the LECs di. One observes that m0 increases
with increasing cut-off, that means in DR its value is above
the one in CR when one chooses Λ = 1GeV. Insisting
that mN takes its physical value at the physical value of
Mπ and MK when studying the pion and the kaon mass
dependence, respectively, we find

710 MeV . m0 . 1070 MeV , (4.2)

which is consistent with expectations and also with the
findings in [15] (note that in that paper a different method
was used to estimate the theoretical uncertainty, which we
consider less reliable than the one used here). The range
given in eq. (4.2) of course includes the SU(2) value of
about 880 MeV [20]. Also, we note again that the MILC
data are obtained using staggered fermions, so strictly
speaking one should use “staggered fermion CHPT”. How-
ever, we believe that this will not significantly alter the
trends discussed here.

Another quantity of interest is the pion-nucleon sigma
term,

σπN (0) = m̂〈N |ūu+ d̄d|N〉 = m̂
∂mN

∂m̂
. (4.3)
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Fig. 8. Pion mass dependence of the Σ mass for various sets
of the LECs di as explained in the text.

It can be extracted directly from the slope of the nuc-
leon massmN (Mπ,MK) at the physical value of the quark
masses. For the optimal set and the LECs from [15], we
obtain

σπN (0) = 44.9 [39.5, 46.7] MeV , (4.4)

where the values in the brackets are obtained from the
variation of the di as discussed before (which is a con-
servative estimate of the uncertainty). These numbers are
consistent with the results of [15] (as they should) and the
study of SU(2) lattice data in [23], σπN = 49 ± 3MeV.
The resulting strangeness fraction can be obtained from
σπN (0) = σ0/(1 − y) and using σ0 = 37MeV from [15]
(which is consistent with the pioneering work in [24], σ0 =
35±5MeV). This leads to y = 0.07 . . . 0.22, which is again
consistent with [15] and also with the extraction of [25].

We end this section with some comments on the con-
vergence of the chiral expansion. In fact, we have also per-
formed calculations with sixth-order improvement terms
(as defined in ref. [20]). None of our results for pion masses
below 500 MeV was affected drastically by this. We there-
fore conclude, by comparing, e.g., the dashed, solid and
dot-dashed lines in fig. 2 and the various curves in fig. 3,
that for pion masses less than 400 MeV the convergence
is very good and that it is acceptable for masses below
550 MeV. This agrees with the findings in [20]. For the
kaon mass dependence, our findings are very similar.

4.3 Hyperon masses

We now consider the octet members with strangeness. As
noted before, when fixing the coefficients in the improve-
ment term, we have not insisted to recover the Gell-Mann–
Okubo relation, thus some of the masses are somewhat off
their empirical values. In table 3 we collect the resulting
values for the improved third and fourth order. While the
Σ mass is well reproduced, the Λ and Ξ masses come out
by about 10–15% too high. To get a handle on the theoret-
ical accuracy, we also use the values for the di from [15];
in that case all masses are exactly reproduced.
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Fig. 9. Kaon mass dependence of the Σ mass for various sets
of the LECs di as explained in the text.
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Fig. 10. Pion mass dependence of the Ξ mass for various sets
of the LECs di as explained in the text.

Table 3. Baryon masses in MeV in DR and CR with Λ =
1GeV for different orders. For the experimental numbers, we
haven taken the masses of the neutral particles.

Order / Imp. 3rd Fourth Fourth Exp.
baryon CR CR DR

Λ 1115 1304 1243 1116

Σ 1101 1194 1167 1193

Ξ 1222 1532 1437 1315

The corresponding pion and kaon mass dependences
for the Λ, the Σ and the Ξ are shown in figs. 6-11, re-
spectively. The dot-dashed lines refer to the optimal set
of the LECs/to the LECs from [15]. We note in partic-
ular that the pion mass dependence for the Ξ is much
flatter as one would expect from the MILC data. This is
not unexpected —the Ξ only contains one valence light
quark and should thus be less sensitive to variations in
the pion mass. Clearly, one could improve this description
by fitting directly to these particles.
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Fig. 11. Kaon mass dependence of the Ξ mass for various sets
of the LECs di as explained in the text.

We are grateful to Claude Bernard for some clarifying com-
ments on the first version of this manuscript and Thomas
Lippert for a very useful communication.

Appendix A. Baryon masses

Here, we collect some formalism to calculate the baryon
masses from the baryon self-energies. Consider the heavy-
baryon approach. The baryon four-momentum is pµ =
m0vµ + rµ, with vµ the four-velocity subject to the con-
straint v2 = 1 and rµ is the (small) residual four-
momentum, ω = v · r ¿ m0. The baryon self-energy
Σ(ω, r) has the chiral expansion

Σ(ω, r) = Σ(2)(ω, r)+Σ(3)(ω, r)+Σ(4)(ω, r)+. . . , (A.1)

and the corresponding baryon mass shift is then given by

(with δmB = δm
(2)
B + δm

(3)
B + δm

(4)
B + . . .):

δm
(2)
B = Σ(2)(0, r) +

r2

2m0
, (A.2)

δm
(3)
B = Σ(3)(0, r) +

∂

∂ω
Σ(2)(0, r)

(

δm
(2)
B −

r2

2m0
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, (A.3)

δm
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B = − (δm

(2)
B )2

2m0
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∂

∂ω
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2m0
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2
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∂ω2
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B
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m0
+

r4

4m2
0

)

.

(A.4)
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From this, one obtains the pertinent representations of the
baryon masses. In the following, we only discuss the nuc-
leon mass. More precisely, we now give the correspond-
ing non-vanishing prefactors for the nucleon (we refrain
from giving the coefficients of the other octet members).
At third order, cf. eqs. (3.1), (3.3), one has the standard
values

γDN = −4M2
K , γFN = 4M2

K − 4M2
π ,

απN =
9

4
(D + F )2 , αKN =

1

2
(5D2 − 6DF + 9F 2) ,

αηN =
1

4
(D − 3F )2 . (A.5)

At fourth order, see eq. (3.7), we have a cut-off–
independent and a cut-off–dependent contribution to the
nucleon mass shift. The coefficients of the Λ-independent
term read

εππ1,N = −16d1 − 8d5 − 4d7 − 12d8,

επK1,N = 32d1 − 16d2 − 8d5 − 16d7 + 16d8,

εKK1,N = −16d1 + 16d2 − 16d3 + 16d5 − 16d7 − 16d8,

εππ2,N,π =
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2(4πF0)2
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2
0 + 3b17m

2
0 + 6b19m

2
0

)

,
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1
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(

− 52bDD
2 + 60bFD

2 + 120bDDF

− 72bFDF − 36bDF
2 + 108bFF

2

)

,

εKK2,N,K =
1

3(4πF0)2

(

− 36b1 + 12b2 − 36b3 − 48b8 + 36bD

− 12bF + 48b0 + 52bDD
2 − 60bFD
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+

6DF
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. (A.6)

The corresponding coefficients of the Λ-dependent term
are

β1,N,π =
m0

(4πF0)2

(

− 3b4 − 3b5 − 3b6 − 3b7

− 6b9 +m0(3b15 + 3b16 + 3b17 + 6b19)

)

,

β1,N,K =
m0

8(πF0)2

(

− b12 − 3b4 + b5 + b6 − 3b7

− 4b9 +m0(3b15 − b16 + 3b17 + b18 + 4b19)

)

,

β1,N,η =
m0

3(4πF0)2

(

− 9b4 + 3b5 + 3b6 − b7 − 6b9

+ m0(9b15 − 3b16 + b17 + 6b19)

)

,
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(
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+ 3b17m
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)

,

βπ2,N,K =
1

9(4πF0)2

(

− 52bDD
2 + 60bFD

2 + 120bDDF

− 72bFDF − 36bDF
2 + 108bFF

2

)

,
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βK2,N,K =
1
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(
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,
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,
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. (A.7)

Finally, we note that we use the values of the bi as given
in table 1 and set all other dimension two LECs to zero.

Appendix B. Loop integrals in cut-off

regularization

In this appendix, we collect all integrals needed in the cal-
culation of the baryon self-energy to fourth order utiliz-
ing cut-off regularization. Here, M is a generic symbol for
the propagating Goldstone boson and we give the explicit
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representations only for the relevant case M > |ω|:
I1(M,ω)

.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i

ω − v · k + i0+
(S · k)2

= −i 1

16π2

{
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3
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(
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)

3

2

π
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(
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)

3

2
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√
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ωΛ2

2
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+

(

ω3 − 3

2
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(
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+
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)

−(M2 − ω2) 3

2 arctan

(

√
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− 1
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1 +
M2

Λ2

)

}

,

I1(M, 0) = −i 1

16π2

{

Λ3

3
−M2Λ+M3π

2

−M3 arctan

(

M

Λ

)

}

,

I2(M,ω)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i

ω − v · k + i0+

×(S · k)2(v · k)

= −i 1

16π2

{

1

4
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√

1 +
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Λ2
− 3

8
M2Λ2

√

1 +
M2

Λ2

+
3

8
M4 ln

(

Λ

M
+

√

1 +
Λ2
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)

}

+ ωI1(M,ω) ,

I2(M, 0) = −i 1

16π2

{

1

4
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√
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8
M2Λ2
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+

3

8
M4

[

ln

(

Λ

m0

)

− ln

(

M

m0

)

+ ln

(

1 +

√

1 +
M2

Λ2

)]

}

,

I3(M,ω)
.
=

∫

d4k

(2π)4
i
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(
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,

I4(M,ω)
.
=

∫
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(2π)4
i
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(ω − v · k + i0+)2

×(S · k)2(v · k)

= −i d

dω
I2(M,ω)

= −iI1(M,ω) + ωI3(M,ω) ,

I4(M, 0) = −iI1(M, 0) ,

I5(M,ω)
.
=

∫

d4k

(2π)4
i
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×(S · k)2(v · k)2

= −iωI1(M,ω)− iI2(M,ω) + ω2I3(M,ω) ,

I5(M, 0) = −iI2(M, 0) ,

I6(M,ω)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i2

(ω − v · k + i0+)2

×(S · k)2k2

=M2I3(M,ω) ,

I6(M, 0) =M2I3(M, 0) . (B.1)

Similarly, for the calculation of the baryon tadpole and
the meson masses in CR we need the following integrals:

α1(M)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+

=
1

2(2π)2

{

Λ2
√

1 +
M2

Λ2

−M2
[

ln

(

Λ

m0

)

− ln

(

M
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(

1 +

√
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M2

Λ2
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]}

,

α2(M)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
k2 =M2α1(M) ,

α3(M)
.
=

∫

d4k

(2π)4
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k2 −M2 + i0+
k20

=
1

(2π)2
1

4
Λ4
√
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M2

Λ2
+

1

4
M2α1(M) . (B.2)

Appendix C. Meson masses in cut-off

regularization

Here, we collect the formualae for the meson masses to
fourth order in CR. The pertinent diagrams are tree

graphs with one insertion from L(2)φ and L(4)φ and tadpoles
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with exactly one insertion from L(2)φ . We have

M2
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0,π + δM (4)
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, (C.1)
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M2
η = M2

0,η + δM (4)
η

= M2
0,η −

M4
π

16F 2
0 π

2
ln
Mπ

m0
+

M4
K

6F 2
0 π

2
ln
MK

m0

+
(

− 7M4
π

432F 2
0 π

2
+

11M2
KM

2
π

108F 2
0 π

2
− 4M4

K

27F 2
0 π

2

)

ln
Mη

m0

+
M4
K

F 2
0

(

− 64L
(r)
4

3
− 128L

(r)
5

9
+

128L
(r)
6

3

+
128L

(r)
7

3
+

128L
(r)
8

3

)

+
M2
KM

2
π

F 2
0

(−16L
(r)
4

3
+

64L
(r)
5

9
+

32L
(r)
6

3

−256L
(r)
7

3
− 128L

(r)
8

3
)

+
M4
π

F 2
0

(

8L
(r)
4

3
− 8L

(r)
5

9
− 16L

(r)
6

3

+
128L

(r)
7

3
+ 16L

(r)
8

)

+
M4
π

16F 2
0 π

2
ln

(

1 +

√

1 +

(

Mπ

Λ

)2
)

− M4
K

6F 2
0 π

2
ln

(

1 +

√

1 +

(

MK

Λ

)2
)

−
(

− 7M4
π

432F 2
0 π

2
+

11M2
KM

2
π

108F 2
0 π

2
− 4M4

K

27F 2
0 π

2

)

× ln

(

1 +

√

1 +

(

Mη

Λ

)2
)

+
1

√

1 +
(

Mπ

Λ

)2

×
{

− M2
π

16F 2
0 π

2
Λ2



1−

√

1+

(

Mπ

Λ

)2


− M4
π

16F 2
0 π

2

}

+
1

√

1 +
(

MK

Λ

)2

×
{

M2
K

6F 2
0 π

2
Λ2
(

1−

√

1 +

(

MK

Λ

)2)

+
M4
K

6F 2
0 π

2

}

+
1

√

1 +
(Mη

Λ

)2

{

(

− M2
K

9F 2
0 π

2
+

7M2
π

144F 2
0 π

2
)

×Λ2
(

1−

√

1 +

(

Mη

Λ

)2)

− 4M2
K

27F 2
0 π

2
+

11M2
πM

2
K

108F 2
0 π

2
− 7M2

π

432F 2
0 π

2

}

.

As required, in the limit Λ → ∞ we recover the stan-
dard DR result [26]. The polynomial and logarithmic
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divergences in the cut-off are taken care of by the fol-
lowing renormalization (note again that, e.g., B0 is not
renormalized in DR):

B
(r)
0 = B0 +

1

24π2F 2
0

B0Λ
2 ,

L
(r)
7 +

L
(r)
8

3
= L7 +
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ln
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,

L
(r)
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1
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ln

Λ
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,

L
(r)
4 − 2L

(r)
6 = L4 − 2L6 −

1

576π2
ln

Λ
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. (C.3)

Here, B0 connects the leading terms in the chiral expan-
sion of the Goldstone boson masses with the quark masses,

M2
0,π = 2B

(r)
0 m̂ ,

M2
0,K = B

(r)
0 (m̂+ms) ,

M2
0,η =

2

3
B
(r)
0 (m̂+ 2ms) , (C.4)

with m̂ the average light quark mass.
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